
ECAPA-TDNN Embeddings for Accented Speech Classification

Juan Pablo Zuluaga, Sara Ahmed, Danielius Visockas, Francielle Vargas

Mentor: Cem Subakan

Solution Are large-scale pre-trained acoustic models changing the paradigm of research on ASR and other acoustic downstream tasks?

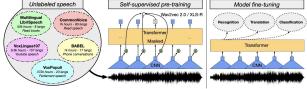
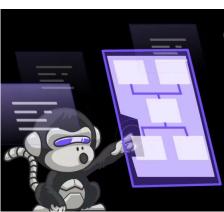
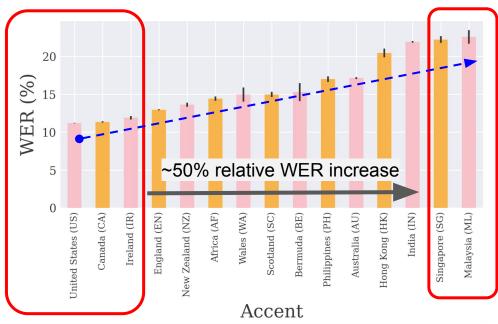
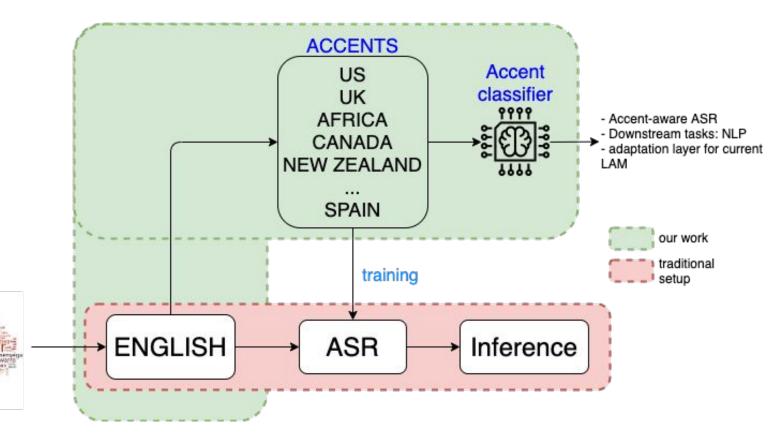



Figure 1: Self-supervised cross-lingual representation learning. We pre-train a large multilingual wav2vec 2.0 Transformer (XLS-R) on 436K hours of unannotated speech data in 128 languages. The training data is from different public speech corpora and we fine-tune the resulting model for several multilingual speech tasks.



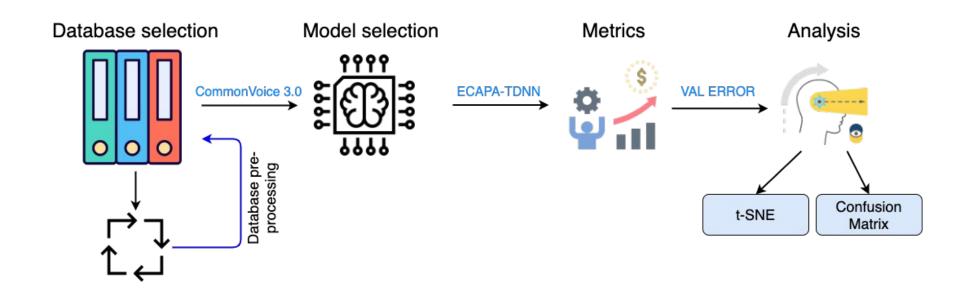
OpenAl Whisper


Robots with Human-Level Speech Recognition Skills?

Background

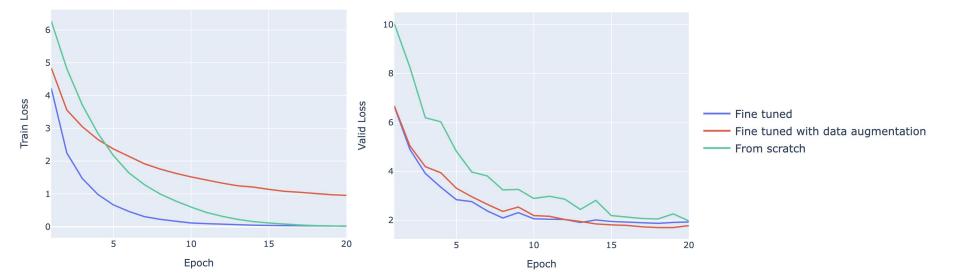
Cámbara, G., Peiró-Lilja, A., Farrús, M. and Luque, J., 2021. English Accent Accuracy Analysis in a State-of-the-Art Automatic Speech Recognition System. arXiv preprint arXiv:2105.05041.

Suggested Framework

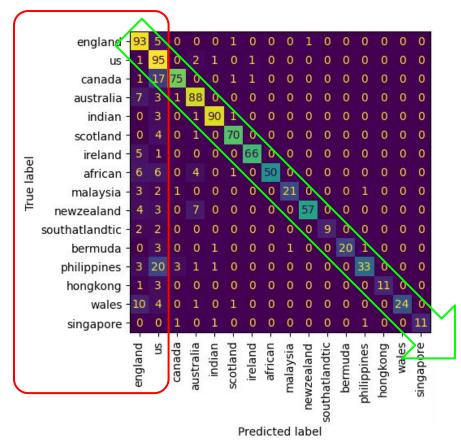


Setup

- Dataset: **CommonVoice 3.0** \rightarrow 16 accents from the EN set
 - **Train set**: ~50 hrs / 45k samples
 - **Dev set**: 1.24 hrs / 1062 samples
 - **Test set**: 1.15 hrs / 972 samples
- Accents: African, Australian, Bermuda, Canada, England, Hong Kong, India, Ireland, Malaysia, New Zealand, Philippines, Scotland, Singapore, South Atlantic, US, Wales
- Recipe in **SpeechBrain** (based on CommonLanguage but with Accents)
 - ECAPA-TDNN model (fine-tuned and trained from scratch models)
 - 🏋 Training: 20 epochs, same batch size
 - 💿 ~2 days on 1 RTX3090 GPU

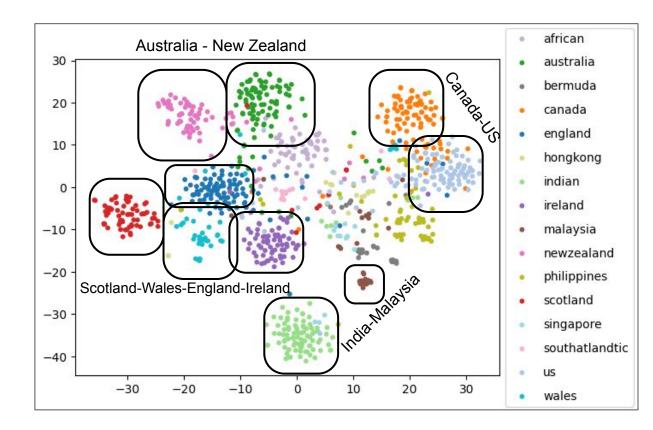


Pipeline



Training Analytics

SpeechBrain	Trained from scratch	Fine-tuned	Fine-tuned w/ data augmentation
Test set Accuracy (not weighted)	82%	85%	₩87%


Analysis of Accent Classification with fine-tuned model (with data augmentation)

Analysis of Accent Classification with fine-tuned model (with data augmentation)

t-SNE shows a level of clustering based on **phonologically similar accents**

misclassifications: England-Wales and US-Canada

Conclusion

Z English speech was classified based on 16 accents using the ECAPA-TDNN architecture.

- is a systems: from-scratch is, fine-tuned is, and <u>fine-tuned with data</u>
 <u>augmentation</u> is.
- 🚫 Misclassifications: level of structure, e.g., between England-Wales and US-Canada.
- • internal categorization of embeddings: t-SNE → level of clustering based on phonological similarity.

Future work:

- ASR frameworks can be more inclusive to accented speech \rightarrow beginning of new era
- Implement proposed accent classification system \rightarrow improve ASR:
 - Contextual biasing of ASR? Accent-aware LM swap at decoding time?
 - One layer of 'adaptation' like adapters in NLP

THANK YOU! Hugging Face 🤗 Demo

Downloads last month 0	
🔸 Hosted inference API 💿	
月 Audio Classification	Examples 🗸
🗅 Browse for file or 🎍 Record from browser	
Canadian English	
► 0:00 / 0:05 — • ► •	
Compute	
canada	0.103
australia	0.070
philippines	0.070
us	0.064
southatlandtic	0.063
JSON Output</th <td>🖸 Maximize</td>	🖸 Maximize

github.com/JuanPZuluaga/accent-recog-slt2022

References

Desplanques, B., Thienpondt, J., & Demuynck, K. (2020). Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification. *arXiv preprint arXiv:2005.07143*.

Huang, C., Chen, T., & Chang, E. (2004). Accent issues in large vocabulary continuous speech recognition. International Journal of Speech Technology, 7(2), 141-153.

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan C., ... & Bengio, Y. (2021). SpeechBrain: A general-purpose speech toolkit. *arXiv preprint arXiv:2106.04624*.

Backup slides

Introduction

- Statistical analysis has shown that accent is one of the key factors in speaker variability that affects the performance of ASR (Huang, Chen, and Chang 2004).
- Pretraining of large acoustic models, such as Whisper, do not take into account accented speech. This leads to mitigating its performance for more low-resource accents, despite the language spoken being high-resource.